Acoustics-08 Paris

"Low operating temperature integral systems" A novel hybrid configuration TA engine

> Kees de Blok Aster Thermoakoestische Systemen

General system aspects Reduction of average regenerator impedance Novel hybrid configuration Experimental verification Conclusions

General system aspects

- Fixed power driven TA engines
 - T₃ >> T₂
 - gain "proportional" with load
 - Acoustic power ≈ constant
 - No or little "hot hex" losses
 - Useful in TA experiments
 - Little practical use
- Fixed temperature driven TA engines
 - $(T_3 T_2) \Rightarrow$ to be minimized
 - fixed gain (per stage)
 - acoustic power inversely proportional to load
 - hex design crucial

Pertain to nearly all practical applications

General system aspects

• Loop, transferred and available power

$$P_{ac_loop} = \frac{A_{reg} \cdot p_0^2}{2.\operatorname{Re}(Z_{reg})}$$

$$P_{ac_out} = P_{ac_loop} \cdot \left(\frac{T_H}{T_C} - 1\right)$$

$$P_{Loss_lam} \approx \alpha . p_0^2 . A_{wall}$$

$$P_{Load} = \frac{A_0 \cdot p_1^2}{2 \cdot \operatorname{Re}(Z_L)}$$

Minimize ratio acoustic loss / transfered power

Two way strategy

- 1. Minimize acoustic losses
 - Avoid high local amplitude (no standing waves)
 - Shape and wall finish (in turbulent regime only)
 - Lower limit by thermal and viscous boundary layer losses !
- 2. Maximize transferred or loop power
 - Decrease average regenerator and load impedance

General system aspects

• Impact of average regenerator impedance on available acoustic power

Assumptions:

- "ideal" 1 stage engine
 - $\omega \tau \Rightarrow 0$
 - $R \Rightarrow 0$
 - $\eta_2 \Rightarrow 1$
- Impedance setting \neq f (Rreg)
- loss calculated for $\frac{1}{2}\lambda$ resonator
- small signal regime (laminar)

- Onset and small signal behavior depends on configuration and geometry only
- Acoustic loop power times gain less than acoustic loss for Zreg= $20.\rho.c$ and $T_H < 410$ K Average regenerator impedance should be set to a minimum value for low and medium operating temperatures

Reduction of average regenerator impedance

- For default torus or bypass geometry
 - Z_{req} commonly set to > 15.p.c
 - Inertance_{torus} << R_{regenerator}
- Timing or phase $(p_a, v_a) = f(R_{reg})$
 - $\blacksquare R_{reg} \Rightarrow 0, Phase \Rightarrow 90^{\circ}$

- More regenerator mass (length) than required from heat capacity ratio
- Low system power density
- Efficiency proportional with regenerator
- flow resistance but less power

Little options left for impedance reduction

Typical impedance versus R_{reg} / $\rho.c$

Hybrid configuration

Back to basics ! (re-arranging acoustic circuitry and apply all "tricks" from the past)

- Traveling wave loop (0)
 - Initial used by Ceperly for timing
 - Now used to avoid high local amplitudes
- Torus or bypass
 - Compliance (3)
 - Inertance (2)
- Velocity reduction
 - Additional bypass (1)
 - $A_{reg} > A_0$

Hybrid configuration

Feedback loop

- Travelling wave if
 - $S_{11} \Rightarrow 0$ (no reflection)

$$Z_0 = \frac{\rho.c}{A_0}$$

- Oscillation if
 - net forward acoustic power gain ≥ 1
 - phase delay of 2-port plus feed back loop equals 2.π (= λ)
- Average regenerator impedance
 - absolute value relatively low
 - phase nearly independent of regenerator flow resistance

Hybrid configuration

Comparison with the "classic" torus or bypass configuration

- Regenerator impedance can be set to arbitrary (lower) value
 - Absolute value depends on geometry and regenerator flow resistance
 - Phase (timing) depends primarily on geometry

• Regenerator mass can be minimized

- Lower onset temperature
- Steeper slope $\Delta P_{ac} / \Delta T$
- Becomes a function of acoustic power (related to heat capacity)
- Efficiency improves for lower regenerator flow resistance (as should be the case for thermo-dynamic systems in general)
- Reduced impedance allows for multiple regenerator units
 - Extended "soft spot"
- High acoustic power at given amplitude (near traveling waves)
 - System more compact
 - Low acoustic loss / power ratio (no extreme local amplitdes)
- Streaming suppression (e.g. membrane) on convenient location

Experimental verification

Measurement setup 2 stage engine

- Water circuits
 - High temperature
 - Gas fired water heater
 - Max 160 °C (10 bar)
 - Low temperature
 - Car radiator to air
 - Flow 1.5 I.min⁻¹
 - 20-30 °C
- Acoustic power measurements
 - Pressure gradient method
- Temperature measurements
 - Water in out (T_0, T_3)
 - **Regenerator high low** (T₂, T₁)

Experimental verification

Typical pressure amplitude distribution at oscillation (Measured Values in kPa)

- **D**₀ = 67 mm A_{reg} =100 x 120 mm 3.54 (42.4W) 3.41 5.22 ■ L_{reg} = 1.58 mm Por = 0.74 ${}^{\circ}$ ■ L_{hex} = 0.56 mm 1.87 Air @ 98 kPa 2.77 \bigcirc (32.3W) Frequency = 132 Hz ■ T_{water in} =148 °C \bigcirc \cap \bigcirc **T**_{water_uit} = $28 \, ^{\circ}\text{C}$ 3.17 4.36 3.75
 - Near traveling wave in feedback loop (SWR < 1.2)
 - No extreme amplitude maxima or minima
 - High acoustic power while only 3.5% drive ratio in feed back loop ("resonator")
 - Reduced regenerator impedance ($Z_{reg}\approx 3~\rho.c$)

Experimental verification

- Onset temperature same for air and argon
- $\Delta T_{ext} \Delta T_{int}$ proportional with power
 - $G_{HEX} \approx 7 \text{ W.K}^{-1}$ (air)
- Hex temperature drop related to gas heat conductivity
- Slope $\triangle Pac / \Delta T$ related to viscosity
- Slope $\triangle Pac / \Delta T$ increases with power
 - better heat exchange (Re, Nu)
 - Higher efficiency

8 juli 2008

Conclusions

- Classic standing wave resonator combined with a high regenerator impedance (set by torus or bypass) impede low and medium temperature applications
- To overcome these limitations an example of a novel hybrid configuration is proposed
- Experimental results agree well with theory behind and indicate a significant improvement in onset temperature and power density
 - With air at atmospheric pressure
 - applied onset temperature difference 63 K
 - acoustic power 42 W at 3.5% drive ratio
- For efficient low temperature operation at 160 °C onset temperature and hex temperature drop still to high
- Hybrid configurations allows for further optimizing TA engines in the low and medium operation temperature regime

8 juli 2008

